Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii.
نویسندگان
چکیده
The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, alpha-Proteobacteria, beta-Proteobacteria, and gamma-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured alpha-proteobacterial clones was consistently associated with the highly suppressive treatments. A quantitative PCR analysis confirmed the association of this Rhizobium-like rDNA group with the H. schachtii suppressiveness.
منابع مشابه
Suppression of Heterodera schachtii Populations by Dactylella oviparasitica in Four Soils.
The effects of Dactylella oviparasitica strain 50 applications on sugarbeet cyst nematode (Heterodera schachtii) population densities and plant weights were assessed in four agricultural soils. The fungus was added to methyl iodide-fumigated and nonfumigated portions of each soil. The soils were seeded with Swiss chard. Four weeks later, soils were infested with H. schachtii second-stage juveni...
متن کاملSuppression of cyst nematode by natural infestation of a nematophagous fungus.
Penetration of cabbage roots by Heterodera schachtii was suppressed 50-77% in loamy sand naturally infested with the nematophagous fungus Hirsutella rhossiliensis. When Heterodera schachtii was incubated in the suppressive soil without plants for 2 days, 40-63% of the juveniles had Hirsutella rhossiliensis spores adhering to their cuticles. Of those with spores, 82-92% were infected. Infected n...
متن کاملJournal of Nematology
A series of experiments were performed to examine the population dynamics of the sugarbeet cyst nematode, Heterodera schachtii, and the nematophagus fungus Dactylella oviparasitica. After two nematode generations, the population densities of H. schachtii were measured in relation to various initial infestation densities of both D. oviparasitica and H. schachtii. In general, higher initial popul...
متن کاملEvaluation of Biocontrol Activity of Rhizobacteria from Beta vulgaris against Heterodera schachtii.
One hundred fifty rhizobacteria isolated from roots of Swiss chard grown in a soil suppressive to the sugar beet cyst nematode, Heterodera schachtii, were tested for their influence on the nematode's ability to hatch and infect roots. Two screening systems were used that focused on the ability of bacteria to inhibit either nematode hatching or root infection. Most of the bacterial strains reduc...
متن کاملDetection and description of soils with specific nematode suppressiveness.
Soils with specific suppressiveness to plant-parasitic nematodes are of interest to define the mechanisms that regulate population density. Suppressive soils prevent nematodes from establishing and from causing disease, and they diminish disease severity after initial nematode damage in continuous culturing of a host. A range of non-specific and specific soil treatments, followed by infestation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 3 شماره
صفحات -
تاریخ انتشار 2003